Thursday, March 19, 2020

Back in the Kitchen essays

Back in the Kitchen essays The role of women in learning and education underwent a gradual change in the Afro-Eurasian world and the Americas between the 11th and 15th centuries. As societies in Africa, Middle East, India, China, Europe, and America grew more complex they created new rights and new restrictions for women. In all regions of the world but the Middle East, society allowed women to maintain education in order to support themselves and their occupations. Women slaves in the Middle East were, however, prized on their intelligence. In Africa, women were trained in culinary arts. In India, women learned how to read and write with the exception of the sacred verses of the Vedas. In China and India, Buddhism helped women gain ground in maintaining education in. Buddhism allowed and encouraged women to join religion and education as equal to men. While in China a few women were Buddhist scholars, the Neo-Confucianists excluded women from the politics and educational system to prevent the power of wo men in government. Upper class women commonly had more opportunities for higher education then the lower class. Women in Europe and America lived more freely and openly than in other societies. European upper class women were able to read and write, become apprentices in towns, and perform family medicine, and some were caught with English Bibles. Noble and urban women had better chances of education than the common and rural women. In America, likewise everyone attended school, and the aristocratic women schooled to be priestesses. On the other hand, upper class Muslim women in India were covered by veils and had less access to educational material than the commoners. Women began to dominate the professional working world in culinary works, textiles, arts, medicine, and as slaves in almost all six regions. Considered physically inferior to men in all societies, women never occupied areas of heavy work, military combat, or long distance trade, but the...

Tuesday, March 3, 2020

Nuclear Fission Versus Nuclear Fusion

Nuclear Fission Versus Nuclear Fusion Nuclear fission and nuclear fusion both are nuclear phenomena that release large amounts  of energy, but they are different processes which yield different products. Learn what nuclear fission and nuclear fusion are and how you can tell them apart. Nuclear Fission Nuclear fission takes place when an  atoms nucleus splits into two or more smaller nuclei. These smaller nuclei are called fission products. Particles (e.g., neutrons, photons, alpha particles) usually are released, too. This is  an exothermic process releasing the kinetic energy of the fission products and energy in the form of gamma radiation. The reason energy is released is because the fission products are more stable (less energetic) than the parent nucleus. Fission may be considered a form of element transmutation since changing the number of protons of an element essentially changes the element from one into another. Nuclear fission may occur naturally, as in the decay of radioactive isotopes, or it can be forced to occur in a reactor or weapon. Nuclear Fission Example: 23592U 10n → 9038Sr 14354Xe 310n Nuclear Fusion Nuclear fusion is a process in which atomic nuclei are fused together to form heavier nuclei. Extremely high temperatures (on the order of 1.5 x 107 °C) can force nuclei together so the strong nuclear force can bond them. Large amounts of energy are released when fusion occurs. It may seem counterintuitive that energy is released both when atoms split and when they merge. The reason energy is released from fusion is that the two atoms have more energy than a single atom. A lot of energy is required to force protons close enough together to overcome the repulsion between them, but at some point, the strong force that binds them overcomes the electrical repulsion. When the nuclei are merged, the excess energy is released. Like fission, nuclear fusion can also transmute one element into another. For example, hydrogen nuclei fuse in stars to form the element helium. Fusion is also used to force together atomic nuclei to form the newest elements on the periodic table. While fusion occurs in nature, its in stars, not on Earth. Fusion on Earth only occurs in labs and weapons. Nuclear Fusion Examples The reactions which take place in the sun provide an example of nuclear fusion: 11H 21H → 32He 32He 32He → 42He 211H 11H 11H → 21H 01ÃŽ ² Distinguishing Between Fission and Fusion Both fission and fusion release enormous amounts of energy. Both fission and fusion reactions can occur  in nuclear bombs. So, how can you tell fission and fusion apart? Fission breaks atomic nuclei into smaller pieces. The starting elements have a higher atomic number than that of the fission products. For example, uranium can fission to yield strontium and krypton.Fusion joins atomic nuclei together. The element formed has more neutrons or more protons than that of the starting material. For example, hydrogen and hydrogen can fuse to form helium.Fission occurs naturally on Earth. An example is the spontaneous fission of uranium, which only happens if enough uranium is present in a small enough volume (rarely). Fusion, on the other hand, does not occur naturally on Earth. Fusion occurs in stars.